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IMPROVED LAMINAR PREDICTIONS USING A
STABILISED TIME-DEPENDENT SIMPLE SCHEME

I.E. BARTON*
Di6ision A, Department of Engineering, Uni6ersity of Cambridge, Trumpington Street, Cambridge CB2 IPZ, UK

SUMMARY

A new scheme which can solve unsteady incompressible flows is described in this paper. The scheme is
a variant of the SIMPLE methodology. Typically, a scheme of this type tends to suffer from stability
problems, which this new scheme overcomes by taking small intermediate steps within a time step. The
calculations made in the intermediate steps are damped to enhance the stability of the scheme. The new
stabilised scheme is evaluated for laminar flow around a square cylinder, impulsively started laminar flow
over a backward-facing step and fluctuating laminar flow over a backward-facing step. Comparisons are
made with other numerical predictions and experimental data. In general, good agreement is found,
except for the fluctuating laminar flow over a backward-facing step problem. The new scheme is found
to have the same level of accuracy, stability and efficiency in comparison with the PISO scheme, but it
is easier to code. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The numerical solution of incompressible fluid flow problems can be achieved in a number of
ways in primitive variables, and consequently, there have been a variety of solution schemes
proposed [1–10]. The fundamental difficulty is in how the velocity and pressure fields are
coupled together. The majority of the solution methodologies devised tend to be for solving
steady state problems. This probably reflects the fact that the majority of applications
undertaken are steady state problems. The three most commonly used schemes are based on
variants of the marker and cell (MAC) [11] devised by Harlow and Welch [1], the semi-implicit
method for pressure linked equations scheme (SIMPLE) developed by Patankar and Spalding
[2] and the pressure implicit with splitting operators (PISO) scheme devised by Issa [5]. An
alternative approach to using primitive variables is to rearrange the governing equations so
that pressure is no longer a dependent variable, e.g. vorticity–streamfunction notation [12,13],
but this approach is not readily applicable to complex flow problems or three-dimensional
problems.

The current research concerns the SIMPLE and PISO schemes, where an unsteady state
variant of SIMPLE is developed. The SIMPLE scheme was initially established by various
authors [2,3,14,15], and is presented in great detail in Patankar [16]. The scheme was originally
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formulated to solve steady state problems. The development of the scheme for unsteady state
problems has been developed [17–20]. The original formulation uses a pseudo time-derivative
in order to underrelax the scheme. This approach essentially amounts to local time stepping
[3,21]. In comparison, the PISO scheme [5,22] was developed to solve transient problems using
real time stepping. Generally speaking, the SIMPLE and PISO schemes have strong similari-
ties, both in terms of algorithmic formulation and general methodology.

The SIMPLE scheme has been enhanced in a number of ways by others, some recent
enhancements include a non-staggered formulation using a finite difference approach [23].
Multigrid techniques have been incorporated [24], as well as a multigrid solvers [25]. The
original formulations of the SIMPLE scheme used Cartesian grid systems, however, body fitted
co-ordinates are now very popular [26,27] and the finite element method has been used with
the SIMPLE scheme [28]. Enhancements made to the SIMPLE-type methodologies have been
reviewed elsewhere [29–31].

The original PISO scheme devised by Issa [5] has also been developed, though mainly for
combusting flows [22,32,33]. This includes combusting particulate flows [34]. The application
of the multigrid method has been applied to PISO, again for a combustion chamber
application [9]. Dukowicz [35] presented an example of particulate time-dependent flow with a
Monte Carlo simulation for particle dispersion. The most suitable application of the source
term for turbulent flows using the SIMPLE and PISO schemes is investigated in Wanik and
Schnell [17].

The present investigation is a continuation from Barton [20], where the SIMPLE and PISO
variants were tested for an unsteady state flow problem. A SIMPLE variant scheme called
scheme (2) in Barton [20], which is referred to as SIMPLE2 in the present paper, was found
to predict solutions as accurately as the PISO scheme, in addition to having a similar
computational cost when using the same time step, but the scheme was found to be less stable
than the PISO scheme. In the present research, the SIMPLE2 scheme is developed so that it
is made as stable as the PISO scheme. The need to develop such a scheme is that the SIMPLE
methodology does not have velocity correction terms, which can be complex to derive for
non-Cartesian grid systems. Also, in principle, it has the benefit that additional partial
differential governing equations can be coupled with the solution of the velocity and pressure
fields to a greater degree. The present research does not examine this premise. The new scheme
is referred to as SIMPLE*.

2. NUMERICAL ANALYSIS

The governing equations for planar, unsteady, constant density flow can be described by
simplified Navier–Stokes equations and the equation of continuity. These equations are
expressed as
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where r is the density and m is the viscosity of the flow. The governing equations are solved
in primitive form (u, 6, p). The first step in the solution procedure is to discretise the above
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governing equations, applying conventional differencing to the partial derivative terms, e.g.
refer to Reference [36]. In general form, this can be expressed as�
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Dx(ru)n+1+Dy(r6)n+1=0. (6)

The A coefficients contain the discretised flux terms and diffusion terms. These terms have
been derived elsewhere [16,37] and do not require any further elucidation here. The M index
represents the nodes surrounding the pole node incorporated from the discretisation proce-
dure. The A coefficients in the above notation have a superscript n*, which represents the
time-level of the velocity terms used in their construction. This new notation is introduced
because previous formulations of the SIMPLE and PISO scheme apply ‘linear implicit
treatment’ to terms such as u2. This term therefore, becomes unun+1. The un term is then used
in the construction of the A coefficients and the un+1 term is used in the solution algorithm.
As the SIMPLE2 and the SIMPLE* scheme presented later, updates the coefficient terms, the
present research specifically states what velocity terms form the construction of the A
coefficients.

The time derivative is constructed from the a, b, g terms. Crank–Nicolson differencing [38]
is achieved by the respective substitution of (1, l, 0) and one-sided forward differencing [39]
(OSFD) is achieved by the respective substitution of (3/2, 2, −1/2). Both schemes are
second-order-accurate, based around different time levels; where Crank–Nicolson is based on
the n+ l/2 time level and OSFD is based on the n+ l time level.

The momentum equations (4) and (5) are further simplified in order to present the PISO,
SIMPLE2 and SIMPLE* schemes. These two equations are represented by a single equation,
where U can be replaced by either u or 6. Also, the time-derivative terms have been
incorporated into the AP coefficient and the source term Su.

AP
n*UP

n+1=% AM
n*UM

n+1−Dpn+1+Su. (7)

The numerical calculations used a second-order upwind differencing (SOUD) scheme [40];
however, the algorithms presented could be applied to a number of differencing and interpola-
tion schemes. For example, the hybrid differencing scheme [41], has been extensively applied to
the SIMPLE and PISO schemes.

The outlet condition was found by extrapolation. First-order and quadratic extrapolations
recommended by Peric [42] were found to give fairly poor solutions in the outlet region. The
outflow boundary condition developed and discussed in Barton [21] was applied. In short, the
extrapolated velocities at the outlet are calculated using the following fit,

u=A+
B

(x/Dx)
+

C
(x/Dx)2. (8)

In the extrapolation, the four velocity positions upstream of the outflow boundary are used.
The velocity position the furthest from the outflow boundary is used as the datum position for
x. The velocity values at the other three positions are used for extrapolation calculation. The
Dx term is the cell length adjacent to the outflow boundary. Therefore, if uniform cells are used
near the exit region, the extrapolated velocity value is estimated by (using compass notation),
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uexit=
27uw−12uww+uwww

16
, (9)

and is then corrected to ensure that overall flux is conserved. This formulation appears to
reduce numerical errors near the outflow boundary.

Similar to other numerical studies, prescribed velocity profiles are set at the inlet. No-slip
boundary conditions are applied at the wall boundaries.

The discretised equations form a matrix that is solved using the tri-diagonal matrix
algorithm [38] (TDMA). The algorithm sweeps through the solution domain a fixed number of
times. If, however, the matrix array is solved to an accuracy of at least 0.1% of the maximum
change, then the matrix solution procedure is terminated for that iteration.

3. THE NUMERICAL SOLUTION PROCEDURES

The PISO, SIMPLE2 and SIMPLE* schemes are outlined below.

3.1. The PISO scheme

The standard PISO scheme is detailed in Issa [5]. Issa also discusses the similarities and
differences of the PISO algorithm compared with the SIMPLE algorithm. Both schemes solve
the pressure field by ensuring mass continuity is satisfied. Also, both schemes use the basic
algorithmic formulation of initially predicting the velocity field based on the current pressure
field, and then correcting the pressure and velocity fields so they satisfy mass continuity. This
is achieved in the following steps:

Step l. Predict velocities based on the momentum equations and the previously calculated
pressure field.

AP
n UP* =% AM

n UM* −Dpn+Su. (10)

Step 2. Predict pressure and velocities in order to satisfy continuity. This is achieved using
the following equation:

AP
n UP**=% AM

n UM* −Dp*+Su. (11)

From the previous step one obtains

UP**=UP* −D(p*−pn)/AP
n . (12)

Next, assuming that Equation (12) must obey continuity, this is substituted into Equation (6),
which leads to the following equation

Dx(ru)*+Dy(r6)*=Dx(Dx(p*−pn)/AP,u
n )+Dy(Dy(p*−pn)/AP,6

n ), (13)

which is the first Poisson equation used to predict the pressure field. After its solution, values
of p* can be substituted into Equation (12) and the terms u**p and 6**p can be calculated. The
next step is similar to the previous step.

Step 3. Correct the pressure and velocities such that continuity is satisfied, using the
following equation

AP
n UP***=% AM

n UM**−Dp**+Su. (14)
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Again, taking this equation away from the previous step, the following equation is ob-
tained, similar to Equation (12),

UP***=UP**+% AM
n (UM**−UM* )/AP

n −D(p**−p*)/AP
n . (15)

In this case, however, there are velocity correction terms, which further complicates the
next Poisson pressure equation that is derived and solved.

The original PISO scheme, as presented by Issa [5], uses the Crank–Nicolson scheme for
the time-derivative. Kim and Benson [43], however, apply OSFD to the PISO scheme
arguing that this will improve the solution from first-order-accurate to second-order-accu-
rate for the temporal terms. In Barton [20], the PISO scheme was found to exhibit greater
accuracy with the Crank–Nicolson scheme compared with the OSFD scheme, which contra-
dicts Kim and Benson’s argument. Although, the pressure gradient is implicitly treated, this
is not true for all of the velocity terms, i.e. u2 terms become unun+1. It is therefore,
straightforward to show that a second-order approximation of unun+1 is given by (u+1/2)2.
If these terms dominant the flow, then the Crank–Nicolson scheme is second-order-accu-
rate. The current research uses the Crank–Nicolson scheme for the PISO algorithm.

3.2. The SIMPLE2 scheme

This scheme is detailed in Barton [20], as scheme (2). It follows the standard SIMPLE
methodology using real time-derivatives. The scheme exactly follows the same first two
steps of the PISO scheme described above. The next two steps are a repetition of the Steps
1 and 2, except using updated coefficients and pressure field. Steps 3 and 4 are given as:

Step 3. Correct the velocities based on the momentum equations using the updated
pressure field;

AP**UP* =% AM**UM* −Dp*+Su. (16)

Step 4. Correct the pressure and velocities in order to satisfy continuity using the discre-
tised equation of continuity and the following equation,

AP**UP**=% AM**UM* −Dp**+Su. (17)

The advantage of the SIMPLE2 scheme is that it does not require the solution of velocity
correction terms. The pressure field is predicted and corrected similar to the PISO scheme.
The SIMPLE2 scheme requires four steps in its solution. In contrast, PISO only requires
three steps; however, the required CPU is not that much greater than the PISO scheme
because approximately 80% of the required CPU time is spent solving the pressure field. In
Barton [20], the SIMPLE2 scheme was found to predict more accurate results using the
OSFD scheme instead of the Crank–Nicolson scheme. This possibly suggests that the u2

terms are being solved closer to the form of (un+1)2 rather than (un+1/2)2. For the two test
cases predicted in Barton [20], the maximum time step the SIMPLE2 scheme could use
without predicting divergent results was approximately half the value of the PISO scheme
for flow around a square cylinder, and a tenth of the value for flow over a backward-facing
step. Clearly, the stability of the scheme requires improvement. This is achieved in SIM-
PLE*.
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3.3. The SIMPLE* scheme

The SIMPLE* scheme is a continuation of the SIMPLE2 scheme, where the SIMPLE
routine is repeated a number of times; however, between each cycle certain terms are
underrelaxed. In order for the scheme to remain time-accurate, the last solution must be free
from underrelaxation. For the scheme, N needs to be defined as the total number of internal
cycles and I as the current internal cycle number. This means for the first internal cycle I=1;
therefore, a coefficient with a superscript of 0 refers to a previous external time step value.
Now, the scheme can be described as

Cycle (I), Step 1. Predict velocities based on the momentum equations.

AP
(I−1)**UP

I*=% AM
(I−1)**UM

I*−Dp (I−1)+Su. (18)

After the above set of equations is solved, underrelax the solution in the following manner:

UP
I*NEW=UP

I*OLDaU+UP
(I−1)*(1−aU), (19)

where aU=min[I/(N−1), 1]. Note, Up
0* is taken to be the previous velocity solution. Also, the

underrelaxation parameters from Equation (19) are not introduced into Equation (18), as
Raithby and Schneider [3] do in their formulation of SIMPLE, but directly afterwards. This is
important when the pressure correction equation is formed by taking Equation (20) away from
Equation (18). The underrelaxation parameter is dependent on the internal cycle number; this
initially dampens out spurious results, but the final two cycles have a value of unity, allowing
the solution to remain time-accurate.

Cycle (I), Step 2. Predict the pressure correction field and correct the velocity fields with the
following equation taken away from Equation (18); which is substituted into the discretised
equation of continuity, therefore, the same derivation previously discussed for the PISO and
SIMPLE2 schemes is again applied,

AP
(I−1)**UP

I*=% AM
(I−1)**UM

I*−DpI+Su. (20)

The pressure correction terms are therefore in the form:

pcI=pI−pI−1. (21)

These pressure correction terms are not underrelaxed when applied to the velocity correction
relationship, but they are when applied to the pressure field, e.g.

pI=pI−1+pcIap. (22)

In this case, the underrelaxation parameter is given by ap=min[(I/(N−1))2, 1]. Note that the
previous underrelaxation for the velocity terms is linear, whereas, the updated pressure field is
non-linearly underrelaxed. Divergent results were found to be dominated by the pressure field
calculation and to a lesser degree in the velocity calculation; whereas the velocity corrections
played an insignificant role. Therefore, the pressure field is strongly relaxed for the initial
cycles, with no underrelaxation applied on the final two cycles, again to ensure time-accuracy.
Note that the SIMPLE* scheme is a generalisation of the SIMPLE2 scheme; if N=2, then the
two schemes are the same.

Taking an overview of the SIMPLE* scheme, it would appear that the scheme requires
approximately N/2 times greater CPU time for a solution compared with the PISO scheme.
This is true if the pressure correction field is solved to the same degree of accuracy per cycle;
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however, the internal cycles do not require an accurate solution where small approximate steps
to the final solution of the cycle are acceptable. Therefore, the matrix solution algorithm does
not have to be applied to the same degree of accuracy. For example, using the sweeping
TDMA solution procedure [38], 100 sweeps may be required for a successful application of the
PISO scheme, whereas using the SIMPLE* scheme, approximately 100/N sweeps may only be
required to achieve the same degree of accuracy, if not better. This is because the pressure field
is solved with the same number of sweeps converging to a solution on each internal cycle.

4. EXAMPLE APPLICATIONS

The schemes presented are applied to two example applications, laminar flow over a backward-
facing step and laminar flow around a square cylinder, as a validation exercise. These two
applications were selected because the first one is an example of a steady state problem, while
the second is an unsteady state problem, where vortices are shed downstream of the cylinder.
Finally, a simulation using a fluctuating inlet velocity profile over a backward-facing step is
presented as a demonstration exercise.

4.1. Flow o6er a backward-facing step

A backward-facing step is one of the most simple geometries where flow separation and
reattachment occur. The present research considers a flow which has an upper fixed wall
boundary, a similar configuration is experimentally and numerically studied by Armaly et al.
[44]. The upper boundary simplifies the boundary conditions and consequently, the problem
has a popular numerical problem. Computations of a backward-facing step geometry have
been carried out by a large number of authors [8,12,13,44–51]. All these studies have
investigated an enclosed backward-facing step where the geometry is similar to the present
study. The flow configuration is illustrated in Figure 1. The expansion number is 2, where the
expansion number is defined as the ratio of the main channel height to the inlet channel height.
The problem applies a parabolic u-velocity profile at the inlet. The Reynolds number is defined
using twice the inlet channel height, 2h, the average inlet velocity and the fluid’s dynamic
viscosity. This definition is the same as in the study by Armaly et al. [44]. The problem domain
used in the calculations is 40 step heights long in the main channel, two small inlet of channels
of 0.1h and 1.2h are tested. The outlet condition discussed in Section 2 is applied to the outlet
boundary, and no-slip boundary conditions are applied at the walls.

The computations are undertaken on a non-uniform Cartesian grid system. The grid system
uses 70×50 grid points and 80×50 for the longer inlet channel geometry. There is grid
refinement close to the walls, including the step wall. A similar grid distribution was tested for

Figure 1. Illustration of the flow over a backward-facing step, showing several recirculation regions attached to the
upper and lower walls. The labelling system of the reattachment and separation positions is depicted.
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Table I. Steady state numerical predictions of the main reattachment and
separation positions at an inlet Reynolds number of Re=800

x3x2x1

12.19 9.75 20.89Present results
9.64 20.96Barton [51] 12.03

12.44 10.18Sani and Gresho [50] 20.50
Gartling [48] 9.70 20.9512.20

grid independency in Barton [54]. Therefore, the differences should be typically B1% for the
finest grid results. The largest differences tend to occur for the separation length, x2, for some
of the higher Reynolds numbers; the differences between the two sets of results are of the order
of 2%. Spatial errors are not an essential consideration in the present study, as interest is in the
time-dependent behaviour of the schemes that can be observed, provided spatial errors are not
a dominant factor. Although, for this particular problem compared with the laminar flow
around a square cylinder, obtaining accurate predictions is of greater interest as there is a
consensus of opinion of what are the correct flow characteristics.

4.1.1. A steady state problem. Initially, the classical backward-facing step problem recom-
mended by Gresho [52] is investigated. The problem sets the inlet Reynolds number to
Re=800. Gresho et al. [53] have established that the flow is steady for inlet Reynolds numbers
up to Re=800, using a variety of numerical schemes, but have not established when the flow
becomes unstable. Furthermore, the experimental results [44] become transitional at Re=1200.
This indicates that the problem should converge to a steady state solution. There are numerous
steady state predictions for this problem, and a recent review is given in Barton [54]. It is
sufficient to say that recent accurate predictions have been detailed in Gartling [48], Sani and
Gresho [50] and Barton [51]. The current predictions of the reattachment and separation
positions, x1, x2 and x3 at T=200, where T is non-dimensionalised time, are compared with
the steady state predictions of Gartling [48], Sani and Gresho [50] and Barton [51] in Table I.
The growth of the recirculation regions appears be to finished for times greater than T=200,
and well established by T=100. The numerical results shown in the table are taken from the
results that use the finest grid and best outlet treatment in their particular study. There are
only minor discrepancies in the present results compared with other predictions.

4.1.2. Growth of recirculation regions problem. The growth of the main recirculation regions
is investigated for an impulsively started flow. The start-up flow conditions set the pressure
field to zero, and a parabolic u-velocity profile at the inlet. The rest of the u-velocity field is
set to the value of half the maximum inlet velocity, and the start-up conditions for the
6-velocity field is set to zero. The simulation therefore, has to cope with introducing the
pressure field and introducing viscous effects into the velocity field. The start-up flow
conditions allow for initial rapid growth of the reattachment and separation positions.

The problem was tested to find the maximum time step applicable without producing
divergent results. It was found that both the SIMPLE* and PISO schemes could successfully
predict results using a non-dimensionalised time step of DT=0.2. The maximum time step the
SIMPLE2 scheme could be applied to was DT=0.03. A set of results using the SIMPLE*
scheme and a time step of DT=0.002, was run for 50 time units. These results are compared
with predictions form the PISO, SIMPLE2 and SIMPLE* schemes using a time step value of
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Table II. Prediction of the growth of the main reattachment and separation positions with time, using the
small lip geometry

SIMPLE* (DT=0.002) SIMPLE* (DT=0.03)SIMPLE2 (DT=0.03)PISO (DT=0.03)

x3x3T x1 x2 x2x3 x1x1 x2 x3 x1 x2

9.58 5.62 3.9810 5.62 3.98 9.57 5.74 7.58 9.579.54 5.61 3.96
12.735.267.1320 7 l2 5.26 12.7312.73 6.93 8.06 10.11 7.12 5.25

15.10 8.16 6.1130 8.15 15.106.10 15.10 7.10 8.17 9.98 8.15 6.10
16.886.828.9340 8.93 6.82 16.8816.88 7.29 8.43 10.16 8.92 6.81

18.24 9.55 7.3850 9.55 7.37 18.24 7.586 8.72 18.2410.43 9.55 7.37

DT=0.03. The positions of the reattachment and separation positions x1, x2 and x3 are shown
in Table II at various times. The results show that the present predictions have not reached
their steady state solution, which, as previously discussed, requires about 200 time units.

The results in Table II are a matter of concern as the SIMPLE2 and the SIMPLE* schemes
predict dramatically different results compared with PISO. Note that this is not dependent on
the time step. First, as can be seen from Table II, the SIMPLE* scheme using a small time step
agrees well with the SIMPLE2 and SIMPLE* results using a larger time step. Second, the
PISO scheme was also tested using a small time step and was found to produce similar results
compared with the results using a larger time step. (At least this aspect of the both schemes is
satisfactory). The differences in the PISO scheme compared with the SIMPLE2 and SIMPLE*
schemes results were found to be caused by the inlet boundary reflecting pressure waves from
the growth of the upper recirculation region. This can be prevented by making the dimensions
of channel longer. The results in Table III show that the results from the PISO scheme and the
SIMPLE* scheme using a long inlet channel are virtually identical. In addition, good
agreement between these sets of results and the results using a small lip with the SIMPLE*
scheme is obtained.

As the current research is interested in the time-dependent behaviour of the various schemes,
the current results are not tested for grid independency. This is because the implicit nature of
the various schemes can be observed, despite any spatial errors being present. Nevertheless,
from a previous study using a similar grid resolution and the same differencing scheme [54], it
can be inferred that the current set of results are grid-independent.

The fine time step results using the SIMPLE* scheme are compared with the predictions of
Durst and Periera [55]. This is not strictly legitimate, because the two sets of predictions use
different start-up conditions and slightly different geometries, flow configurations and inlet

Table III. Prediction of the growth of the main reattachment and separation
positions with time, using a long inlet channel

PISO SIMPLE*

x3 x1 x2T x3x1 x2

9.42 5.5510 3.86 9.415.58 3.88
12.615.177.0312.625.187.0520

15.01 8.0330 6.00 15.008.04 6.01
16.786.688.7840 16.796.688.79
18.147.189.3818.147.189.3950

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 841–857 (1998)
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Table IV. Prediction of the growth of the main reattachment and separation
positions with time for the problem studied by Durst and Pereira [55] where

the inlet velocity is slowly increased

x2 x3T x1

3.1 5.810 4.2
5.6 4.720 8.9

4.86.5 10.730
40 7.6 5.2 13.1

conditions. Durst and Pereira use a longer inlet channel and smaller expansion number, but
probably more importantly a different start-up solution. Even so, the growth of the various
reattachment and separation positions appear to follow the same behaviour; where the main
reattachment position, x1, initially grows rapidly with time until a second eddy forms
downstream. After a period of T=40 from the start, the second eddy dies. The upper
recirculation region grows in size and moves downstream with time. Initially, there is the
creation of two minor recirculation regions: one forming a small recirculation region inside the
main upper recirculation region and the other far downstream as the pressure finally recovers.
Table IV shows the growth of the main reattachment and separation positions with time for
the predictions by Durst and Pereira [55].

4.2. Unsteady laminar flow around a square cylinder

The problem of flow around a square cylinder, at a free stream Reynolds number of
Re=250 is predicted. This problem has been previously studied [20,56–58]. The cylinder
diameter is D. The present problem domain sets the inlet boundary 3D upstream of the
cylinder and the outlet boundary 10D downstream of the cylinder. The upper and lower
boundaries are set at 8D away from the cylinder. A uniform velocity profile is set at the inlet
boundary. The upper/lower boundary set du/dy=0 and 6=0 across it. The outlet condition
outlined in Section 2 is used. The flow configuration is illustrated in Figure 2. The grid system
is 50×50 in size, with very close refinement at the walls. Temporal datum results are predicted
using a time step of DT=0.005 and the PISO and SIMPLE2 schemes (these results are
identical to at least three orders of magnitude). The results in Table V show the flow

Figure 2. Illustration of flow around a square cylinder, showing an impression of vortex shedding behind the cylinder.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 841–857 (1998)
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Table V. The predicted flow characteristics for the flow around a square
cylinder problema

CD
MAX CD

AVE TDCD
MINCL

MAX CL
MIN TL

1.876 1.618 1.744 6.010Datum 1.008 −1.001 6.014
1.621 1.727PISO 0.986 −0.891 6.183 1.834 6.188

6.0671.612 1.725SIMPLE2 1.8400.906 −0.901 6.062
1.847 1.611 1.729 6.078SIMPLE* 0.915 −0.910 6.067

a Includes the lift coefficient CL and its period TL, as well as the drag coefficient CD and
its period TD.

characteristics using the PISO, SIMPLE2 and SIMPLE* schemes using a time step of
DT=0.05. This time step value is sufficiently small to capture the physics of the flow, but also
sufficiently large to demonstrate temporal numerical diffusion. The SIMPLE* scheme is tested
with the OSFD scheme. The flow characteristics include the maximum and minimum
lift coefficients, CL

MAX and CL
MIN; the maximum, minimum and average drag coefficients,

CD
MAX, CD

MIN and CD
AVE well as the period of the lift oscillation, TL, and the period of the

complete drag oscillation, TD. The Strouhal number is the inverse of TL.
The streamlines of the SIMPLE* results are shown in Figure 3 for the non-dimensionalised

time intervals of 5, 10, 15, 20, 35, 50, 65, 80, 95. The results show that the impulsively started
flow almost immediately separates, forming two recirculation regions, which are also identical
in size. The recirculation regions start to grow in size with time until the system finally becomes
unstable and a vortex is shed. The flow then sheds vortices in an oscillatory manner from the
top and bottom separation points behind the cylinder. The vortices one shed from the cylinder
rapidly dissipate forming a considerable effect in the wake, which causes an oscillatory drag
effect on the upper and lower surfaces of the cylinder.

The lift coefficient and period of the lift cycle, as well as drag coefficient and period of the
drag cycle, are presented in Table V, similar analysis is undertaken [20]. In addition, Table VI
presents the computational efficiency in the form of the CPU run time per iteration, Rc, as well
as the maximum time step value that can be applied without predicting divergent results. The
results show that a slightly better accuracy is achieved using the SIMPLE2 scheme followed by
the SIMPLE* and PISO schemes. The quickest scheme is the PISO; however, the CPU run
times are similar. The stability of the SIMPLE2 scheme is close to the SIMPLE* and PISO
schemes for this particular problem. Stability is problem-dependent and it is likely that the
maximum time step applicable is more a reflection of the physics of the flow than the
numerical stability of the schemes.

4.3. Fluctuating laminar flow o6er a backward-facing step

As a demonstration exercise, fluctuating laminar flow over a backward-facing step is
predicted. This problem has been experimentally studied by Sobey [59]. In the current problem,
flow accelerates and then decelerates to a halt for a single cycle. The current interest in this
problem is to establish the correct conditions required to generate a vortex sheet in the
channel. The geometry with the long inlet channel used in Section 4.1 is also used in the
current problem. The only difference is the inlet profile fluctuates in magnitude, so that the
inlet u-parabola profile varies with time, such that

u(t)=uINLET sin 2pvt. (23)
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Figure 3. Predictions of the streamlines for flow around a square cylinder taken from an impulsive start using the
SIMPLE* scheme, the illustration respectively shows streamline results for the non-dimensionalised times of 5, 10, 15,

20, 35, 50, 65, 80 and 95.

The frequency of oscillation is set to v=1.0 Hz, and the simulation is run for 0.5 s using the
SIMPLE* scheme, where N=10 and Dt=5×10−5 s, the non-dimensionalised time step is
DT=0.004. The Reynolds number is set to Re=320, based on the mean inlet velocity, and the
Strouhal number is set to St=0.012. The definition of these flow parameters are four times
higher than Sobey [59], where the half step height is used as a length scale. The same geometry
and flow configuration used in Sobey is modeled, where the step height is set to 1 mm and

Table VI. Results for the flow around a square cylinder problem, showing the
accuracy of the lift and drag coefficients, the required CPU time per iteration

and maximum time step

Rc (s) DTMAXsL sD

1.89PISO 0.15.14×10−2 8.46×10−3

2.07 0.066.76×10−33.08×10−2SIMPLE2
SIMPLE* 4.18×10−2 7.00×10−3 2.22 0.1
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Figure 4. Predictions of the streamlines for the fluctuating flow over a backward-facing step problem. The results are
respectively taken from the times at 0.39, 0.42, 0.44. 0.47 and 0.5 s. These results are drawn to a similar scale as the

experimental photographic results.

water is modeled where the dynamic viscosity is set to n=1×10−6 m2 s−1 (it is assumed that
the water is at a constant 20°C). Figure 4 shows the streamlines for t=0.39, 0.42, 0.44, 0.47
and 0.5 s and therefore, the figure can been compared with the observations made by Sobey.
These results are shown in Figure 5 in the form of an artistic impression of the photographic
plates. Examining the physics of the flow is an area of future research. The reader is referred
to Sobey [59] for a discussion of the possible formation of the vortex wave. The current set of
results indicate that there is not a good agreement between the predictions and the experimen-
tal results; though there is a similarity in the behaviour of the flow fields. Recirculation regions
grow with time, moving very slightly upstream. The vortex structure of the numerical
predictions is almost exactly twice the length of the experimental results. In other respects, the
numerical predictions are in agreement with the experimental results. For example, the
predicted rate of growth of the first three vortices shown in Figure 4 is similar to the
experimental results.

The discrepancy in the results has not been identified, the following aspects have examined

1. Grid-independency using a finer grid as well as a higher-order differencing scheme.
2. Inlet Reynolds number variation, the Reynolds number was doubled and halved, surpris-

ingly similar predictions were made. (The length of the recirculation regions does not
appear to be directly proportionate to the Reynolds number).
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3. Inlet profile, uniform and parabola profiles were tested, as well as setting a constant
downward velocity at the inlet to encourage early reattachment.

4. Time step values have been tested, using real time steps of Dt=2×10−4, 1×10−4 and
5×10−5 s.

5. The SIMPLE* scheme has been validated against the PISO scheme, where identical results
were obtained.

6. The outlet boundary condition was tested by replacing the outlet boundary extrapolation
with first-order approximation of Sommerfeld’s equation as well as first-order extrapola-
tion. (The flow changes slowly in the outlet region, and therefore the outlet condition plays
an insignificant role).

7. The geometry was varied using a very long inlet channel (10h) and a very long main
channel (60h).

The author can only conclude that an input variable has been incorrectly stated or assumed,
or the experimental flow does not behave as a planar flow.

Figure 5. Artistic impression of the streamlines for the fluctuating flow over a backward-facing step problem taken
from photographic results. The results are for the same times as Figure 4.
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5. CONCLUDING REMARKS

A new scheme, called SIMPLE*, which can solve unsteady incompressible flows has been
presented in this paper. The scheme is a SIMPLE variant. Generally speaking, from simula-
tions undertaken, it appears to have a similar accuracy, stability, implicit treatment and
computational efficiency as compared with the well-established scheme, PISO. Both schemes
predict identical results provided realistic boundary conditions are applied. The advantage of
the new scheme is that it does not require velocity correction terms. This is particularly
advantageous when dealing with complex differencing schemes, curvilinear or unstructured
grid systems.

The novel feature of the new scheme is in using intermediate steps for a single time step.
After each intermediate step is calculated, the results are underrelaxed to enhance the stability.
An effective way of underrelaxing (damping) the results is described, although, the most
efficient method of underrelaxation requires further investigation and will probably be found
to be problem-dependent.

The new scheme was used to solve three laminar flow problems. The problems were
impulsively started flow over a backward-facing step, flow around a square cylinder and
fluctuating flow over a backward-facing step. Comparisons made with numerical and experi-
mental data show good agreement for the first two applications, while only qualitative
agreement with the experimental data was achieved for the fluctuating flow over a backward-
facing step problem. The cause for the discrepancy was investigated but not identified.
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